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Soil Carbon Storage Estimation in a Forested Watershed using
Quantitative Soil-Landscape Modeling

James A. Thompson* and Randall K. Kolka

ABSTRACT Proxy information is used to stratify larger areas, and
then measurements within each of these strata are ag-Carbon storage in soils is important to forest ecosystems. Moreover,
gregated and multiplied by the area of each stratumforest soils may serve as important C sinks for ameliorating excess
(Schimel and Potter, 1995). Soil survey maps and labora-atmospheric CO2. Spatial estimates of soil organic C (SOC) storage
tory characterization data are the primary resources forhave traditionally relied upon soil survey maps and laboratory charac-

terization data. This approach does not account for inherent variability estimating the amount of SOC stored in soils using this
within map units, and often relies on incomplete, unrepresentative, approach (e.g., Homann et al., 1998; Kern et al., 1998;
or biased data. Our objective was to develop soil-landscape models Galbraith et al., 2003; Tan et al., 2004). There are numer-
that quantify relationships between SOC and topographic variables ous benefits to this approach (Arnold, 1995), but there
derived from digital elevation models. Within a 1500-ha watershed also are several limitations. There may be significant
in eastern Kentucky, the amount of SOC stored in the soil to a depth variability of SOC content within map units due to natu-of 0.3 m was estimated using triplicate cores at each node of a 380-m

ral soil variability and unmapped inclusions of highergrid. We stratified the data into four aspect classes and used robust
or lower C soils (Eswaran et al., 1995). Galbraith et al.linear regression to generate empirical models. Despite low coeffi-
(2003) attributed the greatest source of uncertainty incients of correlation between measured SOC and individual terrain
their SOC maps to the high variation among SOC dataattributes, we developed and validated models that explain up to 71%

of SOC variability using three to five terrain attributes. Mean SOC from replicate samples from the same soil series. Also,
content in the upper 30 cm, as predicted from our models, is 5.3 kg the soil characterization data that are commonly used
m�2, compared with an estimate of 2.9 kg m�2 from soil survey data. to establish SOC levels within a soil map unit were not
Total SOC storage in the upper 30 cm within the entire watershed is originally collected for examining SOC content, and
82.0 Gg, compared with an estimate of 44.8 Gg from soil survey data. therefore may not include all of the necessary data for
A soil-landscape modeling approach may prove useful for future SOC calculating SOC storage (Amichev and Galbraith, 2004).spatial modeling because it incorporates the continuous variability of

These data sets also may be biased toward different soilSOC across landscapes and may be transportable to similar landscapes.
types or landscape settings, and may not adequately
represent true range in variability of SOC (Tan et al.,
2004).An important component in understanding the role

An alternative to the measure and multiply approachof soils in the global C cycle is developing reliable
is referred to as “paint by numbers” (Schimel and Pot-estimates of the amounts of C stored in the soil and
ter, 1995). This approach incorporates information onother terrestrial C pools. Estimates of SOC storage have
multiple environmental factors within geographic areasbeen made at global (Post et al., 1990; Akin, 1991; Es-
that are used as input variables to models, which thenwaran et al., 1995), continental (Bajtes, 2000), national
are used to make predictions that can be multiplied by(Kern, 1994), state (Bliss et al., 1995; Kern et al., 1998;
the areal extent of given combinations of each of theseAmichev and Galbraith, 2004; Tan et al., 2004), regional
factors. This approach is akin to soil-landscape modeling(Homann et al., 1998; Galbraith et al., 2003), and land-
(McSweeney et al., 1994), in which the variability of soilsscape (Bell et al., 2000; Arrouays et al., 1995, 1998;
is analyzed with respect to changes in environmentalChaplot et al., 2001; Terra et al., 2004) scales. These
variables known to influence soil property variability,studies have used a range of techniques by which point
such as topography, hydrology, or geology.measurements of SOC are extrapolated to larger scale

Soil-landscape modeling has been successfully ap-predictions of C storage.
plied to predict soil variability at the site or hillslopeThese various techniques can be divided into two
scale, focusing almost exclusively on small-scale land-general methods of spatial extrapolation. The most
scapes of �100 ha, with some as small as 2 ha (Mooreprominent method of producing coarse predictions of
et al., 1993; Thompson et al., 1997, 2001; Chaplot et al.,SOC storage at regional to global scales is often referred
2000; Gessler et al., 2000; Park et al., 2001; Florinsky etto as “measure and multiply” (Schimel and Potter, 1995).
al., 2002). These studies have demonstrated that combi-
nations of one to five terrain attributes derived from a
digital elevation model (DEM) can explain 20 to 88% ofJ.A. Thompson, Division of Plant and Soil Sciences, West Virginia

Univ., Morgantown, WV 26506-6108; R.K. Kolka, USDA Forest Ser- the variability of selected soil properties. The empirical
vice-North Central Research Station, Grand Rapids, MN 55744-3399. relationships between soil properties and terrain attri-
Received 30 Sept. 2004. *Corresponding author (james.thompson@ butes are unique to each soil property and each soil-mail.wvu.edu).

forming environment. Modeling examples at the water-
Published in Soil Sci. Soc. Am. J. 69:1086–1093 (2005). shed scale (and coarser) are more limited and require
Pedology
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THOMPSON & KOLKA: CARBON STORAGE SOIL-LANDSCAPE MODELING 1087

more complex modeling techniques (Gessler et al., 1995; a means to quantify the spatial distribution of soil prop-
erties by relying on the variability of correlated proxyMcKenzie and Ryan, 1999; Ryan et al., 2000). Arrouays

et al. (1995, 1998) and Chaplot et al. (2001) have recently variables that are easier to collect at a higher resolution
than sampling and measuring soil properties directly.applied environmental correlation techniques to gener-

ate SOC predictions, demonstrating the applicability of Such models may be transferable to similar landscapes,
facilitating even broader scale prediction of SOC storage.terrain attributes and other spatial data for developing

empirical soil-landscape models of the spatial variability
of SOC storage. This approach can also reduce the need MATERIALS AND METHODS
for extensive field sampling and costly laboratory analy-

The research was conducted at the University of Kentucky’ssis by minimizing the number of samples needed to Robinson Forest, a 6000-ha research and educational property
generate spatial predictions (Chaplot et al., 2001). located on the Cumberland Plateau in southeastern Kentucky

Our objective was to develop quantitative soil-land- (Fig. 1). Watersheds at Robinson Forest are dominated by
scape models that quantify relationships between SOC mature, mixed, mesophytic forest. The bedrock is level-bed-
and topographic variables derived from a DEM. Our ded with two distinct geologic formations (McDowell, 1985).

Both the upper and lower formations are dominated by irregu-hypothesis was that the spatial patterns of SOC in a
larly interbedded sandstones, siltstones, and shales (McDow-mountainous forested watershed could be predicted
ell, 1985). A 1500-ha watershed within Robinson Forest,from spatial patterns of terrain attributes that have been
known as the Clemons Fork watershed, was selected for de-shown to influence soil-forming processes. Quantifica-
tailed study (Fig. 1). Clemons Fork flows from the northeasttion of the systematic soil-landscape relationships into
to the southwest, so slope aspects are predominantly south-quantitative soil-landscape models will overcome some easterly and northwesterly. The range in elevation in the Clem-

of the limitations of the measure and multiply approach ons Fork watershed is from 260 to 490 m. Slopes are steep,
by ensuring a representative and complete dataset nec- interrupted only by narrow ridges and narrow stream bottoms,
essary for calculating SOC storage and resolving vari- with a mean slope gradient of 31%.

Our examination of SOC storage at Robinson Forest in-ability of SOC within map units. This approach provides

Fig. 1. Digital elevation model for the Clemons Fork watershed and the location of sample points. Streams (white) are shown for reference.
Inset: The location of Robinson Forest in southeastern Kentucky.
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1088 SOIL SCI. SOC. AM. J., VOL. 69, JULY–AUGUST 2005

cludes (i) a geographic information system-based inventory Terrain Analysis
of SOC storage based on estimates from published soil survey Terrain data were derived from United States Geologicdata, and (ii) a soil-landscape modeling inventory based on Survey (USGS) DEM with 30-m horizontal resolution andsoil samples collected from a regular grid of sample points. 1-m vertical precision. Terrain attributes were calculated usingWe generated SOC estimates using both the measure and Arc/Info (Version 8.0.2, Environmental Systems Research In-multiply approach and the soil-landscape modeling approach stitute, Inc., Redlands, CA). Terrain attributes included eleva-to more clearly contrast these two methods and their results. tion (Z), slope gradient (S), slope aspect (�), profile (down

slope) curvature (Kp), contour (cross-slope) curvature (Kc),
Analysis of Soil Survey Data total curvature (K), tangential curvature (K t ), upslope length

(L), specific catchment area (Ac), specific dispersal area (Ad),We acquired USDA NRCS Soil Survey Geographic (SSUR- topographic wetness index (TWI), stream power index (SPI),GO) data for Breathitt County, Kentucky, and followed the proximity to nearest stream (Pstream ), elevation above nearestmethods of Bliss et al. (1995) to compute SOC storage within stream (Estream ), and slope to nearest stream (Sstream ). Tangentialthe upper 30 cm of soil on an areal basis (kg m�2). The curvature, a measure of local flow convergence or divergence,SSURGO database reports both a high and a low estimate of is a secondary terrain attribute calculated as the product ofsoil organic matter for each soil horizon. These values are contour curvature and slope gradient (Kt � Kc � S). Theconverted to SOC values by dividing by 1.724 (Soil Survey topographic wetness index, a predictor of zones of soil satura-Laboratory Staff, 1996). The SOC content of each horizon (to tion, is the ratio of specific catchment area to slope gradienta depth of 30 cm) was calculated using SOC content, bulk [TWI � ln(Ac/S)] (Wilson and Gallant, 2000). The SPI, adensity, thickness, and rock fragment content data of each measure of runoff erosivity, is the product of specific catch-horizon. The SOC content of each horizon was summed over ment area and slope gradient [SPI � ln(Ac � S)] (Wilson andthe 30-cm depth to determine the SOC content of each soil Gallant, 2000). The values for these terrain attributes werein the survey area. The SOC content of each map unit was extracted for all sample locations by assigning the terraincalculated as the weighted average of all the soils represented attribute values from the nearest cell of the DEM.in each map unit. We calculated three SOC storage values:
(i) a low value using the reported low estimate, (ii) a high

Statistical Analysis and Modelingvalue using the reported high estimate, and (iii) an average
value from the midpoint of the high and low estimates. Simple exploratory data analysis functions were used to

elucidate the primary topographic factors that appear to con-
trol SOC in the landscapes of Robinson Forest. We calculated

Soil-Landscape Modeling the correlation coefficients between SOC and the various ter-
rain attributes calculated from the DEM, and we examinedSampling and Analysis
scatter plots of SOC for these terrain attributes.

A systematic grid (384 m by 384 m) of continuous forest We developed empirical models of the distribution of SOC
inventory (CFI) plots had been previously established as part using a split-sample method, with 75% of data randomly se-
of the long-term forest management at Robinson Forest. Our lected and used for model training and the remaining 25%
sampling was linked to the CFI to allow for the possibility of used for model validation. Stepwise linear regression (Neter
in the future combining results from this study to sampling of et al., 1989) and regression trees were used to identify variables
aboveground C storage at these plots. We collected triplicate related to SOC, then robust linear regression (Rousseeuw and
soil samples from all 101 CFI plots located within the Clemons Leroy, 1987) was used to develop models using 75% of the
Fork watershed of Robinson Forest (Fig. 1). The three repli- data. Models were tested against the assumptions of linear
cate samples were collected 3 m from the established center regression analysis (Neter et al., 1989): lack of multicollinear-
of the CFI plot, with the locations selected based on topogra- ity, equal error variance (no heteroscedasticity), and normal
phy: one sample taken upslope of plot center, one taken down- and random residuals. We validated the models using simple
slope of plot center, and one taken to the right of plot center. regression analysis on the remaining 25% of the data, compar-
We sampled soil below the forest floor to a depth of 30 cm ing the observed SOC values with those predicted from indi-
(or to refusal) using 6.25-cm diam. core, which was driven vidual linear models and the terrain attributes in the validation
into the soil with a slide hammer, then extracted with a shovel. data set.
Each sample was divided into three subsamples: the A horizon
(based on color), the subsoil from the bottom of the A horizon

RESULTS AND DISCUSSIONto 20 cm, and the subsoil from 20 to 30 cm. These samples
were not composited. Samples were air dried and sieved to Analysis of Soil Survey Dataremove rock fragments. A 20-g subsample was then removed
for C analysis by dry combustion (Nelson and Sommers, 1996). The mean SOC content in the upper 30 cm as calcu-
The remainder was oven dried and we calculated a rock free lated from the SSURGO data from Clemons Fork wa-
bulk density (Blake and Hartge, 1986), correcting for the oven- tershed is 2.9 kg m�2. The total SOC storage in the
dry weight of the previous subsample. SOC content of each upper 30 cm within the entire watershed is 44.8 Gg. Soil
layer was calculated as: organic C storage could be as high as 73.7 Gg, or as

low as 14.6 Gg considering the high and low estimatesSOC � OC � Db � D � UCF
reported in the SSURGO database. Patterns of soils

where SOC is soil organic C content (g m�2), OC is the organic and landforms are recognized in Robinson Forest andC concentration (%), Db is bulk density of the rock-free soil
expressed in soil map unit delineations associated with(g cm�3), D is the horizon thickness (cm), and UCF is a unit
four landscape positions: NE-facing slopes, SW-facingconversion factor (� 100 cm2 m�2). For each core, the total
slopes, ridgetops, and floodplains. These differencesSOC was calculated as the sum of SOC from all layers. The
translate to differences in average SOC levels in mapmean total SOC for each CFI plot was calculated from the

three replicate cores. units in the Clemons Fork watershed (Fig. 2), with high-
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Fig. 2. Soil organic C distribution in the upper 30 cm for soils of the Clemons Fork watershed of Robinson Forest calculated from SSURGO
soil map unit data.

est SOC levels on NE-facing slopes (4.3 kg m�2), less class (Fig. 3) illustrate the differences in SOC among
NW-, NE-, SE-, and SW-facing slopes. There is a largeon SW-facing slopes (2.7–3.5 kg m�2), and lowest on

floodplains, terraces, ridgetops, and minelands (0.3–3.4 range in measured SOC within each slope aspect class,
but the highest SOC values are found on the NE- andkg m�2). Within map units, more specific relationships

between soils and landforms were noted, but not deline- SE-facing slopes (Fig. 3). The NE-facing slopes have
most of the highest SOC values, which we attributeated. This within map unit variability is shown by ranges

in SOC estimates among soils within a map unit (Ta- to the lower mean annual soil temperature and higher
available soil moisture (Hutchins et al., 1976; Huncklerble 1).

These differences, if elucidated, could be used to cre- and Schaetzl, 1997). The observed differences in the
distribution of SOC are statistically significant (P �ate more accurate spatial estimates of SOC content.

Mapping of SOC in Robinson Forest using the SSURGO 0.05) between the SW- and SE-facing and the SW- and
data is not ideal because: (i) all of Robinson Forest and

Table 1. Soil organic C (SOC) content estimates in the upper 30 cmthe surrounding watersheds is mapped in soil complexes
determined from soil survey data, by soil series and land-and undifferentiated soil groups, which have a higher scape position.

degree of variability of SOC within map units; (ii) SOC
Soil series Landscape position SOC contentranges are unchanged among different phases of the

kg m�2same soil type; and (iii) SOC ranges are identical for
NE facing slopessoils when found in different complexes.

Cutshin benches, footslopes 6.2–14.6
Kimper coves, benches 2.5–17.9

Soil-Landscape Modeling Approach Shelocta sideslopes, footslopes 0.9–6.6
Cloverlick upper sideslopes 0.7–6.2

The mean amount of organic C in the upper 30 cm SW facing slopes
of soil (SOC) in the Clemons Fork watershed (based

Kimper coves, benches 2.5–17.9
on the soil core samples) is 3.6 kg m�2. The SOC, how- Shelocta sideslopes, footslopes 0.9–6.6

Hazelton sideslopes, benches 0.7–6.2ever, is not distributed equally throughout these land-
Gilpin sideslopes, ridges 0.3–2.7scapes. Box plots of SOC conditioned by slope aspect
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Table 3. Model parameters from soil-landscape models for the
prediction of soil organic C content (kg m�2) for each of four
slope aspect classes at Robinson Forest.

Model coefficient

Model parameter SW NE SE NW

Intercept 3436 �5022 1765 �835
Elevation 2.0 27.7 13.9 10.7
Profile curvature – 1148 – –
Contour curvature 369 – 2158 548
Total curvature – 2879 – –
Specific catchment area – – �545 –
Specific dispersal area 70.4 �2.7 �30.5 –
Stream power index – – – 89.4
Slope to nearest stream �44.1 �62.8 �42.2 –
Model R2 0.707 0.679 0.567 0.676
Validation r 2 0.020 0.324 0.182 0.802

higher elevations (Bolstad and Vose, 2001). Within our
study site the change in the geologic formation occurs
at approximately 400 m. However, both the upper andFig. 3. Boxplots of SOC in the Clemons Fork watershed.
lower formations are dominated by irregularly interbed-
ded sandstones, siltstones, and shales, such that thereNE-facing slopes based on two-sample Kolmogorov-
is no clear lithologic distinction between the two forma-Smirnov goodness of fit test results. These data support
tions (McDowell, 1985). Additionally, most soils havethe presence of landscape-scale differences in SOC in
formed in colluvium (Hayes, 1998) from a mixture ofRobinson Forest.
rock types, and samples from within a single strati-Correlation coefficients between SOC and individual
graphic unit show increasing SOC with increasing eleva-terrain attributes are low, with few statistically signifi-
tion. Subtle differences in these two stratigraphic units,cant values (Table 2). Because of the effect of slope
which are not represented in the available geologic mapaspect on soil formation in these landscapes, when we
data, may have an influence on C dynamics in thisstratified the data into four aspect classes, correlation
landscape.coefficients within at least one the individual aspect

We stratified the data by slope aspect when generat-classes are higher than for the whole data set (Table 2).
ing the empirical models used to relate variation in SOCElevation had the highest correlation values with SOC
to variability in selected terrain attributes. The modelsin all cases except for on the SE-facing slopes, and al-
explain up to 71% of the variability in SOC using se-ways had a positive correlation, with higher SOC values
lected terrain attributes (Table 3). Among all models,associated with higher elevations in these landscapes.
elevation was always a significant model variable, withAt regional scales in the southern Appalachians, Garten
higher SOC values found at higher elevations.et al. (1999) and Bolstad and Vose (2001) found that

All models included a slope curvature attribute, withSOC content increased with elevation over ranges of
contour curvature being included in three of the four�1000 m. Bolstad and Vose (2001) attributed this to
models. The NE model did not include contour curva-cooler soil temperatures at higher elevations, but their
ture, but did include both profile and total curvature.results were confounded by a change in parent material

from mixed sandstone at lower elevations to gneiss at In all cases, slope curvature had a positive correlation

Table 2. Coefficients of correlation between measured soil organic C (SOC) and various terrain attributes calculated from a digital
elevation model (DEM).

Slope aspect class

Terrain attribute All NE SE SW NW

Elevation, m 0.354*** 0.576** 0.209 0.418* 0.468*
Slope gradient, % �0.069 0.184 �0.183 �0.305 �0.006
Slope aspect, � �0.236 0.070 �0.325 0.079 0.235
Specific catchment area, m2 m�1 �0.025 �0.180 �0.238 �0.214 �0.004
Specific dispersal area, m2 m�1 �0.009 0.229 �0.425 0.244 0.221
Total curvature, m m�2 0.118 �0.050 �0.050 0.255 0.165
Profile curvature, m m�2 �0.040 0.088 0.033 �0.123 �0.011
Contour curvature, m m�2 0.153 0.002 �0.048 0.304 0.246
Tangential curvature, cm m�2 0.109 �0.149 0.007 0.224 0.187
Upslope length, m �0.057 �0.121 �0.048 �0.324 �0.038
Topographic wetness index �0.104 �0.047 �0.018 �0.195 �0.146
Stream power index �0.045 �0.166 �0.238 �0.240 �0.013
Proximity to nearest stream, m 0.226* 0.478* 0.145 0.153 0.085
Elevation above nearest stream, m 0.137 0.247 0.062 0.118 0.079
Slope to nearest stream, % �0.044 �0.192 �0.078 �0.048 �0.031

* Significant at the 0.05 probability level.
** Significant at the 0.01 probability level.
*** Significant at the 0.001 probability level.
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with SOC, indicating that convex sites had higher SOC the SW-facing slopes. The mean SOC content in the
upper 30 cm as predicted from our models within Clem-than did concave sites. In low-relief landscapes, soils in

concave positions have been shown to have greater SOC ons Fork watershed is 5.3 kg m�2, with a range from 0
to 11.8 kg m�2. The total SOC storage in the uppercontents than those in convex positions (Gessler et al.,

2000). On the steeper slope gradients in these land- 30 cm within the entire watershed is 82.0 Gg, similar to
the high SOC value calculated from the SSURGO datascapes the convex sideslopes may be somewhat more

stable than the concave sideslopes, where there appears (73.7 Gg), but almost twice the average SOC value
(44.8 Gg).to be some convergence of flow and greater rates of

soil erosion, which in turn produces relatively shallow While the models tend to predict greater SOC storage
throughout the Clemons Fork watershed relative to theand rocky soils, low in SOC.

Slope gradient to the nearest stream was the third SSURGO data, these differences are not uniform across
the study site. The greatest positive differences in SOCterrain attribute that occurred in multiple models and

exhibited a consistent relationship with SOC. In all (model—SSURGO) are found on the summits and NE
slopes where SOC levels are greater, while the leastcases, slope gradient to the nearest stream had a nega-

tive correlation with SOC, indicating that SOC decreased differences are found in lower slope positions, particu-
larly on the SW slopes, and the floodplain soils near theas the gradient to the nearest stream increased. This is

likely attributable to drier soil conditions on steeper watershed outlet where SOC levels are lower (Fig. 6).
slopes, due to more rapid removal of water.

Independent validation data did not consistently re-
CONCLUSIONSflect high correlations between measured SOC and SOC

predicted from the various models (Table 3). The best Systematic soil-landscape relationships exist in Rob-
relationship was seen on the NW slopes (r 2 � 0.802), inson Forest and these relationships can be quantified
however the quality of prediction on the other slopes using a soil-landscape modeling approach, which pro-
may not be as poor as suggested by the coefficients of vides for an ability to (i) resolve variability of soils and
correlation. Scatterplots of measured vs. predicted SOC SOC within combined mapping units common on steep
indicate that these low r 2 values are due to two or three slopes, (ii) represent continuous variability of soil prop-
outliers, while the bulk of the data are clustered around erties across landscapes, and (iii) quantitatively relate
the 1:1 line (Fig. 4). The majority of the outliers are environmental factors (e.g., topography) to soil proper-
from the SE-facing slopes, which had the lowest model ties, including organic C storage. Up to 71% of the
R2 (Table 3). variability in SOC was explained using three to five

Models (Table 3) were used to predict SOC content terrain attributes calculated directly from a 30-m DEM.
of the upper 30 cm throughout the Clemons Fork water- Results suggest that in SOC content in soils of these
shed (Fig. 5). The resulting map depicts the coarse vari- steep mountainous landscapes increases as elevation in-
ability in SOC within the watershed, with SOC levels creases and as slope gradient to the nearest stream de-
that are higher on the NE-facing slopes and lower on creases. However, these and other soil-landscape rela-

tionships were significantly influenced by slope aspect,
with more SOC in soils on east-facing slopes. Stratifica-
tion of the data by slope aspect improved modeling
results, suggesting that modeling efforts at the water-
shed scale and above will require stratifying data into
similar landscape units where soil-landscape processes
have a similar effect on soil development. It is unlikely
that a single model can be developed to be applicable
to all soil-landscapes in an area (e.g., Bell et al., 2000).

The methods used in this study and the results ob-
tained may be applicable to areas outside of Robinson
Forest. The use of these or similar models to estimate
the spatial distribution of SOC requires additional eval-
uation because of the discrepancy between the SOC
storage estimates based on soil-landscape models (82.0
Gg) and those derived from a measure and multiply
approach using SSURGO data (44.8 Gg). Different
methods of estimation normally produced varying in-
ventories of SOC storage (Homann et al., 1998; Gal-
braith et al., 2003). Systematic differences between the
two estimates generated here indicate that traditional
soil survey maps, especially those in steep mountainous
areas, do not depict enough of the landscape-scale soil

Fig. 4. Predicted vs. measured SOC at 26 independent validation variability within map units. Reported SOC content val-points within the Clemons Fork watershed of Robinson Forest.
ues may not be adequate for these purposes becauseDifferent symbols indicate samples from different slope aspect

classes (� � NE, � � NW, � � SE, � � SW). typical values cannot represent the full range in varia-
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Fig. 5. Soil organic C distribution in the upper 30 cm for soils of the Clemons Fork watershed of Robinson Forest calculated using developed
soil-landscape models.

tion across a survey area. Such discrepancies among
SOC storage estimates will be more important as greater
attention is given to the role of SOC in ameliorating
excess atmospheric CO2, particularly how proper soil
management can deliberately increase SOC storage.
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